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Abstract

In the present study, a complete model of thermal diffusion in a TMDSC specimen is pre-
sented. The governing equation takes into account thermal conductivity and does not neglect
temperature gradients. This model is solved analytically for a specimen of cylindrical geome-
try with two surfaces following the block temperature and considering the third surface insu-
lated. The full analytical solution consists of a transient and an asymptotic expression. The as-
ymptotic expression is divided into an underlying and a cyclic part to allow comparison with
existing models. The present model finds that the phase angle between the temperatures of
sample and block are dependent upon the sample material, which has not been predicted by ex-
isting models. Moreover, the present model does not require the use of an experimentally de-
termined constant as long as the cell is ideal. It was found that the phase lag between sample
and block temperatures could be described by two effective thermal diffusivities, A” and A”,
instead of complex heat capacities ¢, and ¢, These heat capacity parameters were viewed as
mathematical artifacts arising from the use of an over-simplified governing equation that does
not take into account thermal conductivity and thermal gradients within the specimen.
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Introduction

Temperature Modulated Differential Scanning Calorimetry, or TMDSC,
MTDSC, is a rather new technique that was conceived in the early 90’s by Read-
ing and co-workers and commercialized by TA Instruments [1-3]. The advan-
tage of TMDSC compared to conventional DSC is that the temperature signal
can be modulated as a sinusoidal wave, and be superimposed over the traditional
heating rate. This technique offers the possibility of deconvoluting the signal
into an in-phase and an out-of-phase response, which can be used to calculate
heat flows or heat capacities [1, 2, 4].
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In 1985, Birge and Nagel performed an experiment with a sinusoidal heat flux
applied to a sample [5]. This technique is also known as AC-calorimetry [6].
Birge and Nagel reported that the product of ¢,k was measured, where ¢, is the
specific heat capacity of the sample and & is its thermal conductivity. This prod-
uct was found to have a real and an imaginary component. However, the authors
estimated the contribution of £ to be very small and therefore considered only
that of ¢p and deconvoluted the product of ¢ and k into cpk and ¢p'k. Reading ez al.
applied an oscillatory condition to a traditional heat flux DSC and through a dis-
crete Fourier transformation the resulting signal was separated into total, revers-
ing, and non-reversing heat flows [3]. This method was commercialized as
TMDSC and reinforced the idea of a complex heat capacity. Many authors fol-
lowed on this concept, including Gill and Schawe [7-9]. Furthermore, Schawe
proposed a frequency dependent c,, which has been observed under certain con-
ditions by Birge and Nagel [5].

The existence of a complex heat capacity has troubled many scientists over
the past years. Heat capacity is a scalar that is thermodynamically defined as the
derivative of enthalpy with respect to temperature at either constant pressure or
volume. Some authors have tried to justify the existence of a complex heat capac-
ity from a thermodynamical viewpoint based on entropy, while others suggest
¢y to be linked to dissipative phenomena [5, 8—11]. However, no entropic origin
can be attributed to ¢;’ using reversible thermodynamics as the derivative of en-
tropy with respect to temperature at constant pressure is equal to heat capacity
over temperature, (35/d7),=C,/T [12]. Therefore if entropy does change depend-
entupon ¢y, it does not contribute to a loss heat capacity within the limit of appli-
cation of reversible thermodynamics. Other authors proposed to use irreversible
thermodynamics to explain the origin of ¢;’ [13]. However, as noted by Héhne,
irreversible thermodynamics is a rather complicated theory which is not yet fully
developed [11]. Basically, there is no well-founded physical or thermodynamical
interpretation of ¢;’. Morcover, hcat capacity is a bulk property of the material
and is therefore isotropic, very much like density p. Heat capacity gradients, as
well as density gradients, can exist in heterogeneous materials, but not in homo-
geneous matter ¢, and p are not tensors, unlike the thermal conductivity k. The
thermal conductivity k can be anisotropic, and is found to be in many materials
like carbon fibers. & can be expressed as a tensor, and its anisotropic properties
make it a very likely candidate for a complex expression: k*=k"+ik” [14, 15]. The
thermal diffusivity o, which is defined as k/pc;, should therefore have a complex
part as well, but the ¢;” utilized by many authors might very well be an artifact
due to a simplistic mathematical model of the TMDSC.

Numerous mathematical models for the computation of the heat capacity
have been published since the commercialization of the TMDSC in the early
1990°s. Most of these models consider the sample temperature to be uniform
throughout the sample at any time, and begin by equating the heat accumulation
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term to Newton’s law of cooling [1, 2, 8, 16]. This approach would be acceptable
if the average temperature of the sample was measured. However, in the TMDSC
instrument, the thermocouples are located at the center bottom of the specimens
and therefore measure the local temperature at this point, which is different from
the average temperature of the specimen. Although this assumption reduces the
governing equation to a single variable (time), it neglects the contribution of
thermal conductivity. Foreman et al. used TMDSC to determine the thermal con-
ductivity k, and found values that agreed within 3% of the literature values [17].
This clearly showed the importance of k in the TMDSC. Foreman et al. proposed
a one dimensional model to compute k. However, their work did not provide a
rigorous mathematical description and does not explain how thermal gradients
within the specimen were accounted for [17]. Lacey and co-workers proposed
several mathematical descriptions of heat transfer in the TMDSC cell [18]. The
case of one-dimensional as well as three-dimensional modecls were discussed,
one of which accounted for the thermal conductivity k. However, the thermal
conductivity was lumped into a calibration factor, and the cylindrical shape of
the specimen was not taken into account along with possible different tempera-
ture gradients [18]. The problem of the temperature gradients was addressed by
Melling ez al. as early as 1969 for the case of DTA (Dillerential Thermal Analy-
sis) [19]. Although DTA differs from TMDSC by the absence of modulation and
does not quantitatively measure heat flow into and out of the sample, the set-up
and the governing equation of heat transfer are similar — only boundary condi-
tions differ. The solution of Melling ef al. accounted for temperature gradients
but only in the radial direction [19]. More recently, Schenker and Stéiger investi-
gated the heat transfer under TMDSC conditions, but considered axial heat dif-
fusion only [20].

Accordingly, there is a need for a mathematical model of TMDSC that takes
into account both the thermal conductivity and the temperature gradients within
the specimens. In the present paper, the analytical solution of the temperature
profile within the sample will be derived. Next the effect of the thermal diffusiv-
ity on the temperature distribution and phase lag will be investigated. To under-
stand the origin of the out-of-phase response, the results will then be compared
to the models which only consider sample heat capacity. It will be shown that an
out-of-phase response can be predicted by incorporation of thermal conductivity
without the introduction of a complex heat capacity.

Mathematical model

The three-dimensional heat flow model of the specimen shown in Fig. 1 is
considered. The DSC pan is assumed to be a right circular cylinder of radius R
with parallel end faces. The height of the specimen is L. The specimen symmetry
implies a temperature profile that does not depend on the angle Q, therefore T is
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considered to be a function of the axial position z, the radial position r, and the
time ¢, To determine the temperature 7=7(r,z,7), the heat diffusion equation:

ot

is expressed in terms of ¢, the thermal diffusivity of the specimen. Expressing
the Laplacian in cylindrical coordinates yields:

oT 19( 0T\ 9T (2)
- = r— |+ —
ot rorl or | 97

v,

S —

Fig. 1 The DSC pan considered to be a cylinder of radius R and length L. Cylindrical coordi-
nates are used to solve the heat diffusion equation

Boundary conditions

The entire specimen is initially at temperature 7,. The top face and side face
of the specimen are presumed to follow the block temperature Ty. The heat flow
through the bottom face is considered to be zero. It can be noted that a full model
of heat transfer in TMDSC of course would account for heat transfer through the
support disk and lower surface of the sample and reference. However, the bound-
ary conditions between the specimen and disk is complex and of the third kind.
This would involve solving the heat diffusion equation for the sample, reference,
and support disk simultaneously with the matched boundary conditions and is
beyond the scope of this paper. Therefore, for the sake of simplicity, it was as-
sumed that the sample is heated from the side and top surfaces and that there was
no heat transfer through the bottom surface. Mathematically this gives:

Specimen temperature equals to 7, initially

T(r,z,0)=T, (3)
Side surface tempcraturc cquals to that of the furnace, T}
T(R.zt) =T 4)

Top surface temperature equals to that of the furnace, T,
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T(r0.6)=Ty
No heat flux at the bottom surface
oT
—k=—(r,.L.t) =0
0z
Symmetry condition at the center of the specimen
aT
—(0,z,5) =0
ar( )

where the furnace (block) temperature is:

Th = Tho + bt + Asin(m?)

505

(5)

(6)

(7)

(8)

In Eq. (8) b is the temperature ramp and A is the amplitude of the modulation.

The pulsation w is equal to 2% over the period of modulation.

Non-dimensionalization

The following change of variables are applied to non-dimensionalize the
problem as well as make the inhomogeneous boundary conditions homogenous:

T-Tp
6 =
Ty
O
"R
Z
C"L
(042
‘C=F

The governing equation, Eq. (2), then becomes:

20 [13( a0 R*%0] [pR? AwR® (wR?
= x— |+ 5= - + cos| —1T
ot | xox| ax L3¢ o, oT, o

The initial condition, Eq. (3), becomes:

Tbo
8(x0,0)=1- T

[+

(9)

(10)

(1D

(12)

(13)

(14)
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The boundary conditions, Egs (4)—(7), become:

8(1,5,1)=0 (15)
8(x,0,7) = 0 (16)
g—g(x,l,'r) -0 (17)
8_6(0,“;,1) - 0 (18)
ox

Solution to the heat diffusion equation

The governing equation, Eq. (13), has now one extra term on the right-hand
side. This term can be thought of as a source term S and will be treated as such by

Green’s theorem, viz:
bR> AR’ [wR?
S=- + cos T (19)
oT, oT, o

First the homogeneous problem, with no source term, is solved. A product so-
lution of the form 8(x,{,7)=X(x)Z({)Y(1) is proposed. This expression is placed in
the governing Eq. (13), with =0, to yield:

1dy 1 d( dXY) RT1dZ 20)
Ydr xX dx|Fdx LdeC2

The boundary conditions (15)—(18) become:

X(H=0 21
Z(0)=0 (22)
a—Z—(l) =0 (23)
0z

?(m =0 24

The first term on the right-hand side of Eq. (20) can be equaled to —A7, the last
term in brackets can be equaled to =y, and the total expression can be equaled to
—k”. This yields:

1dX 2 (.2 R_22
Ydr K = [A +L2 ) (25)
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1 d{ dX
[x_x dxaﬂ*’”z (26)

2
s

Equations (26) and (27), along with boundary conditions (21)—(24), arc
Sturm-Liouville problems [21]. The characteristic solutions (eigenfunctions) to
the Sturm-Liouville problems correspond to an infinite set of characteristic num-
bers (eigenvalues) [21].

The solutions to Eqs (25)—(27) are found to be:

YD =A™ (28)
X(x) = BJo(Ax) + CYo(Ax) (29)
Z(L) = Dsin(u&) + Ecos(uf) (30)

The boundary conditions (22) and (24) imply that £=0 and C=0, respectively.
Boundary conditions (21) and (23) give the following eigenvalues:

An’s satisly the transcendental equation: Jo(Ay) = 0 (31)
Up=(2p ~ I)g where p is an integer (32)

The solution that was found for ¥(7) satisfies the problem without source
term. However, it has to be rejected for a non-zero source term and the following
expression for 8 is postulated:

0550 = Y, T Anp(®)Xa()Zp(5) (33)

n=1 p=1

and now A, (1) has to be determined. This is done by applying Green’s theorem.
The following Green’s function is defined:

G(t— ’; \ " , N - S < —Ki‘p(‘C—T')Xn()C)Xn(x,) ZP(C)ZP(ZJ,) (34)
(=X 0L =D | Y fe X117 Zpll*

n=1 p:]

where IIX,!* and IZ,II* are the norms of the eigenfunctions X, and Z,.
Applying Green’s theorem yields:
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00 ,m) = H( T‘"’}.G(T Oure e LENAA AL + (35)

T11

+ [ [ fs¥Ga - vix G 0axatar

000

where § is the source term defined in Eq. (19).

The temperature profile resulting from Eq. (35) is:

Although complex the above expression provides for a complete description
of a temperature profile response in a typical TMDSC experiment.

w0 0 2 2.2
4 2oty Too bR AmR Knp w
6(x,51) = —|e P | l——— 4+ + -
5 Z Z HpAad 1(An) To aToKrzx,p R o’
n=1| p=1 (xTo Knp + 3
2
'""’"287?""' (36)
aToknp
AoR? 2 Rot oR? . R*ot .
- TN Kn,p COS . + b o Jo(Anx)sin(upl)
aTD[K:,p + 02) J
a

Application to TMDSC

In the TMDSC apparatus, the temperature recorded by the thermocouple is
that of the center bottom surface, which means that it is recorded at x=0 and {=1.
The non-dimensional variables are replaced by the original variables, the tran-

sient terms are dropped for large times (asymptotic solution), x is set to zero, and
Lissetto 1 to yield:

(37
T(O,Lyz) =
2 Z HP nJlO‘vn)
2 2 5 -
- sz - AR o) (Kﬁ,pcos(mt) + ok sin(wt) ||+ Ty
OKp 4 R'ow L o
P Knp + =
o

Equation (37) applies to both the sample and the reference it can be rewritten
under the form:
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TiO,L.t) = szalo AR 7\1— sin(of) — AOR Alcos(mr) +Tp (38)

1 1 1

where i is either r (for the reference) or s (for the sample).
The summation ¢ and the A’s are defined as:

. SN (39)
o= 2 2 l—lpknjl(kn)](n p

n=1 p=1

ii 4 ( ok’ ] (40)

1
O )L(Kn p0i + 0°RY) |

??Ms

1 i 4y [ Oti | (41)
A - upknJl(?»n)L(xn ool + w’RY) |

Defining the in-phase and out-of-phase magnitude M;’ and M,” gives:

2 1

M =A - AoR™— (42)
Aj

21
M! =AoR"— (43)

A7

and
Ti(0,L.p) = bRZLG + Tpo + bt + M{ sin(w?) — M!’ cos(w?) (44)
O

A phase lag ¢ between the temperature oscillation of the block and specimen
can be found by rearranging Eq. (44) into a sine form:

= (bRZG_L + Tho + br}r Misin(wr + @) (45)
051
where:
foNME M (46)
M
t =
anQ ( Mi')J (47)

It can be seen from Eq. (47) that @; is a negative quantity. This indicates that the
specimen temperature lags behind that of the block throughout the experiment.
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The temperature difference AT between the reference and the sample is then:

AT=T;-T,= sz[i— —1—}1 - (48)

Or O

1 1. af 1 1
- A@RY—-— o) - AR — — — tos{wt

To be consistent with the definitions proposed by Lacey et al., the tempera-
ture difference AT is split into an underlying part AT and a cyclic part AT [18].
The underlying term arises from the traditional DSC temperature ramp, whereas
the cyclic term arises from the TMDSC modulation itself.

AT= sz(i - L}’ (49)
o O
1 1Y (1 1Y
ZT:AmRz\/ — ] 4| == sin(wt + ¥) (50)
AL AL A AY
where
1 1
g AT A (51)
1 1
Ar Ag

At this point it is seen that the A definitions, Egs (40) and (41), allow the cy-
clic part to be expressed in a form analogous to that of the underlying part. Fur-
thermore, an inphase and an out-of-phase component have been defined for the
cyclic part under a form which enables a complex (imaginary) description of the
problem. The above formulation allows for a description of the problem in terms
of material and experimental parameters.

Results and discussion

A numerical simulation of the temperature evolution at the center bot-
tom of the sample was undertaken. It was done with the use of the software
Matlab® 4.2c.1 for Windows by The MathWorks, Inc. The parameters used
throughout this paper are displayed in Table 1. Oscillation amplitude and period
were chosen according to the recommended parameters for the TA Instru-
ment 2920 TMDSC and are typical of standard TMDSC operation. The eigenval-
ues Ay’s were obtained from reference [22] and the simulation was run in double
precision with 20 eigenvalues for A, and 20 eigenvalues for ;. The thermal dif-
fusivity o, of the sample was allowed to vary from o, down to four orders of mag-
nitude below o, o, being the thermal diffusivity of the reference pan.
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Table 1 Parameters used for the numerical simulation with typical values [23]

Parameter Symbol Value Unit
Modulation amplitude A 1 K
Radius of the specimen R 0.0033 m
Height of specimen L 0.00074 m
Initial temperature of the sample T, 323 K
Isothermal experiment b 0 Ks™
Aluminium pan o, 9.71-107° m? s
Modulation period of 60 s o 21/60 rads™

Figure 2 shows the temperature evolution of the sample, reference, and block
as it should be measured by the TMDSC thermocouples over one modulation pe-
riod after sufficient time was elapsed to remove the transient effects, provided
that the pans are identical and the cell symmetric. The sample material in Fig. 2
is polyethylene terephthalate (PET). This material was chosen because it does
not exhibit any first order or second order transitions in the temperature range of
interest, which makes it an ideal candidate for this study. Also PET curves are
available in the literature, which is precious for model comparison |7, 8]. It was
found in Fig. 2 that the reference and block temperatures were esscntially indis-
tinguishable. The high thermal diffusivity of the reference pan material (alumi-
num in the present case) does not allow any lag to build up. It can also be seen that
the PET sample exhibits a lower temperature amplitude than the block. This
lower amplitude is due to the lower thermal diffusivity of PET. The thermal dif-
fusivity of PET is about 1/1000 that of aluminum, hence the slower heat transfer.
This is confirmed by the phase lag: the PET temperature evolution on Fig. 2 is

324

Block
Reference

—~ Sample

14

5

& 323

o

<%

g

(3

=

LI S B S B S B oo |

322,...v...‘t....jl...l‘"',v,,
0 10 20 30 40 50 60
Time (s)

Fig. 2 Temperature evolution of the block, sample, and reference over a period of modula-
tion. Parameters are that mentioned in the Table 1 with o, of PET (0.93-107 m* s_l)
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lagging behind that of the block and that of the reference by 3.16 s or 19°. This
clearly demonstrates the importance of thermal diffusivity in the sample re-
sponse to temperature modulation.

1.0
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Fig. 3 Dependence of the sample in-phase temperature magnitude, M/, vs. the ratio of the
sample and reference thermal diffusivities
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Fig. 4 Dependence of the sample out-of-phase temperature magnitude, M, vs. the ratio of
the sample and reference thermal diffusivities

To further investigate the effect of thermal diffusivity, the in-phase and out-
of-phase components of the sample temperature as well as the phase angle are
plotted against the ratio of thermal diffusivities in Figs 3—5. This means that a
phase lag can be predicted independent of the cell calibration, as long as the cell
is ideal (i.e. without thermal resistance between the cell and sensor and in the ab-
sence of cell asymmetry). When oi=ay, the sample is expected to behave exactly
like the reference and this is observed in Figs 3—5: the in-phase component of the
sample temperature, M/, is equal to one (the modulation amplitude), M,” (the
out-of-phase component of the sample temperature) is equal to zero, and the
phase angle ¢; between the temperature signal and the block temperature is insig-
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Fig. 5 Dependence of the sample phase angle @, and the phase angle y vs. the ratio of the
sample and reference thermal diffusivities

nificant. As o, decreases, the heat transfer is not as efficient, and this means a de-
crease in My, an increase in M{”, and a larger phase lag @, as seen on Figs 3—5. The
in-phase sample temperature amplitude, M, is found to remain constant until o
is two orders of magnitude lower than o.. Below this value, the drop in M/ is very
appreciable. The out-of-phase component of the sample temperature, M,”, is
found to be negligible until o drops to about one order of magnitude blow ., as
seen on Fig. 4. This means that for substances with o lower than o,/10, the out-
of-phase component starts to take importance and that the phase lag should be-
come appreciable. The phase lag, shown in Fig. 5, becomes appreciable once the
thermal diffusivity of the sample is 10 times or more lower than that of the alu-
minum reference. As shown in Table 2, most polymers have o, between two and
three orders of magnitude below o, therefore they fall in the area where the
phase angle and the temperature amplitudes of the sample become significantly
different from those of the block.

Note however that for very small values of o, the sensitivity of TMDSC could
be impaired because the transient terms might become important on the time
scale of the experiment. A decrease of o, by an order of magnitude means a time
10 times as long before the transient terms can be neglected. This might be of im-
portance for substances like asphalt or wood that have an extremely low thermal
diffusivity, as can be seen in Table 2.

Once the transient terms have vanished at sufficiently long times, the effect of
thermal diffusivity on the asymptotic solution can be studied. It is, however, not
easy to interpret, especially in the cyclic part of the temperature difference be-
tween the reference and the sample. As seen in Eq. (47), the underlying part is an
explicit function of & and o, whercas the cyclic part depends on some complex
expression of o, and A’ and A”. A" and A” are in units of m*s™, and can be
thought of as the in-phase and the out-of-phase effective thermal diffusivities.
Figure 6 shows how the effective thermal diffusivities depend on the o/c, ratio.
The in-phase effective thermal diffusivity, A’, is found to drop sharply as ¢, goes
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Table 2 Thermal diffusivity o, of selected non-metallic substances [23-26]

Material Thermal ?Illgﬁsl,sll vity +10% (ar:awmiumzsg%]_lo_s m?s™)
Asphalt 0.032 3.30-107
Poty(isoprene) 0.077 7.93.107
Yellow pine 0.084 8.65-107
Poy{ethylene terephthalate) 0.093 9.58-107
Fir 0.097 9.99.107
Poly(methyl methacrylate) 0.113 1.16:107°
Oak 0.131 1.35-107°
Cork 0.181 1.86-1073
Poy(vinyl chloride) 0.346 3.56-107
Urethane foam 0.355 3.66-107
Cellular glass 0.400 4.12-107
Extruded poly(styrene) 0.406 4.18-107
Glass fiber 0.431 4.44107
Cement mortar 0.496 5.11-107
Bakelite 0.719 7.40-107
Pyrex 0.754 7.77-107
Ice 1.002 1.03-107°
Vermiculite 1.018 1.05:107
Granite 1.369 1.41.107
Polystyrene beads 2.066 2.13-107°
Sapphire 8.300 8.55-107

from o to one tenth of ¢,. When o, reaches about one tenth of ¢, the value of A’

is extremely small. The out-of-phase effective thermal diffusivity, A”, exhibits

similar behaviour, but the initial drop is not as sharp and A” reaches low values

only when o is about 100 times smaller than . Interestingly, when o is close to

o, Al is three to four orders of magnitude greater than A¢’. For values of ¢, corre-
sponding to that of polymers shown in Table 2, Ag and A{” are approximately of
the same order of magnitude, indicating that an appreciable phase lag will be ob-
served. A" and A" are the two parameters that dictate the behaviour of the speci-
men and not ¢ and ¢y, as was implied by the many simplified models. The con-
troversial complex heat capacity model can be compared to the model proposed

in this paper.
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Fig. 6 Value of the sample in-phase and out-of-phase effective thermal diffusivity, A and
A, as a function of the ratio of the sample and reference thermal diffusivities

Table 3 shows the parameters of both models for PET at 50°C. Aubuchon and
Gill reported a value of zero for ¢;” [7], which was not anticipated by the present
model since A} was estimated as 3.65-10° m® s, This nil ¢}’ is due to the phase
calibration method used by Aubuchon and Gill [7]. They zeroed the phase angle
to accommodate for the so-called instrumental phase lag. The actual phase angle
that they observed before calibration was 21°, which is 2 degrees higher than the
value predicted by the proposed model. This difference can be partially but not
completely attributed to cell asymmetry. It should be noted that equating the
phase angle to zero is not correct because then the sample contribution is elimi-
nated. The phase calibration should compensate for the instrument non-ideality
and leave the sample contribution untouched. In Aubuchon and Gill, it was seen
that the values obtained for ¢ and ¢;” were dependent upon this phase angle cor-
rection, which means that c; and ¢ are set on an arbitrary scale by the calibration
and that their value has no physical significance. Therefore, the heat capacities
cpand ¢’ are merely mathematical artifacts that appear due to the use of an inade-
quate model that neglects thermal conductivity and thermal gradients within the
sample.

Table 3 Model parameters for PET at 50°C,A=1 K, p=60s

From Ref. {7} Proposed model
c=16Jg K" A, =15610"m’s™

’’ -1 g -1 ’ —6 2 -1
cp:OJg K Al =3.6510"m"s
© = 0° after calibration ¢=19°

¢ = 21° before calibration
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The model developed here takes into account thermal conductivity and the
thermal gradients in the specimen. It also enables the prediction of the TMDSC
temperature profiles without the introduction of mathematical quantities of un-
certain physical or thermodynamical significance.

Collectively, we expect that this analysis has provided an interesting contri-
bution to the TMDSC technique so that its results can be analyzed in similar
manner to other oscillatory type experiments like dynamic mechanical and di-
electric analysis (DMA, DEA).

Conclusions

A rigorous derivation of the heat transfer problem in a cylindrical specimen
under TMDSC condition was presented. The mathematical model considered the
TMDSC pan to be of cylindrical shape with the side and top surfaces following
the temperature of the block. The surface on which the specimen rests was as-
sumed insulated. The three dimensional heat diffusion equation, taking into ac-
count thermal conductivity, was solved analytically by using the product method
and Green'’s theorem after appropriate non-dimensionalization. The solution was
then recast into a form similar to that of the existing models to allow for direct
comparison between models.

This present model was then used to determine the effect of thermal diffusiv-
ity on specimen response. Under typical TMDSC operating conditions, it was
found that as the sample thermal diffusivity decreased, a phase lag appeared be-
tween the applied temperature and the specimen response. It was also found that
the amplitude of the sample temperature oscillation decreased as the sample
thermal diffusivity decreased.

It was found that by incorporating specimen thermal diffusivity rather then
only heat capacity the phase lag between the applied temperature oscillation and
specimen response could be predicted. This phase lag was found to be dependent
on thermal diffusivity rather than on ¢;”, a poorly described and thermodynami-
cally undefined parameter. Based upon this finding, the cyclic or modulated re-
sponse can be expressed in terms of parameters associated with an effective ther-
mal diffusivity of the sample. This definition has the advantage of being more
consistent and associated to material properties that can be properly analyzed
with in-phase and out-of-phase complex descriptions.
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Nomenclature

Roman letters

A
M/

Indices

w3 0B =

modulation amplitude/K

magnitude of the in-phase component of the specimen temperature/K
magnitude of the out-phase component of the specimen temperature/K
magnitude of the specimen temperature response/K

constant which was made T dependent to solve the initial condition of
the governing equation/—

specimen height/m

specimen radius/m

unitless source term that arises in the governing equation as a result of
the change of variable/~

temperature/K

block (furnace) temperature/K

radial part of the product solution postulated for solving the

governing equation/—

axial part of the product solution postulated for solving the

governing equation/—
linear heating rate/K s~
specific heat capacity as define thermodynamically/J kg™ K™'
in-phase component of the specific heat capacity/J kg™ K™’
out-of-phase component of the specific heat capacity/J kg™ K™
thermal conductivity/W m™' K™

period of modulation/s

radial coordinate/m

time/s

axial coordinate/m

1

specimen (either reference or sample)
index of the radial eigenvalues

initial

index of the axial eigenvalues
reference

sample

Greek letters

AT

AT

underlying part of the temperature difference between the reference
and the sample/K

cyclic part of the temperature difference between the reference

and the sample/K
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A’ effective thermal diffusivity term that arises in the in-phase component
of the specimen temperature/m s

A”  effective thermal d1ffusw1ty term that arlses 1n the out-of-phase

component of the specimen temperature/m 57

azimuthal angle coordmate/rad

thermal dlffuswlty/m s

dimensionless axial position/—

dimensionless temperature/—

eigenvalues depending on the sample geometry/—

eigenvalue related to the radial position/—

eigenvalue related to the axial position/—

density/kg m™

summation term that arises in the ramp term of the specimen

temperature/—

dimensionless time/—

phase angle between the specimen response and the block

temperature/rad

phase angle between the cyclic part of the temperature difference and

the block temperature/rad

] pulsation of the oscillation/rad s

QDE PR DR D

<€ B4

-1
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